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The Reliability of k out of n Systems

by

Philip J. Boland and Frank Proschan

A system with n independent components which functions if ;
and only if at least k of the components function is a k out of
n system. Parallel systems are 1 out of n systems and series
systems are n out of n systems. Ifp = (pl’ ceesp pn) is the vec-
tor of component reliabilities for the n components, then h, (@)

is the reliability function of the system. It is shown that

) n
hy (p) is Schur-convex in [H— , 1] and Schur-concave in

- n
[0. :_——:-] . More particularly if I is an n x n doubly stochas-
1

n
tic matrix, then h, (p) = (s) by (pN) whenever p ¢ I-;—:—l- , 1]
n
[ 0, -::—:-i- . This Theorem is compared with a result on Schur-

convexity and -concavity by Gleser {2] which in turn extends work
of Hoeffding [4].
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1. Introduction and Summary. A k out of n system is a system

with n components which functions if and only if k or more of the
components function. Herein we assume that the n components of
the system function independently. If p = (Pl’ cses pn) is the
vector of component reliabilities (functioning probabilities) and
€= (el, cres 'v:n) represents any vector with components equal to

geroes or ones, then

)l‘e )l'e

(1.1) b @ = @,..p) = L pyl...pR01-p, n

1. .o (I'Pn
_e_,el,+...0en2k

is the probability that k or more of the components function. This
function hy : [0, 1)" * [0, 1] is called the reliability function
for a k out of n system with independent components. A one out

of n system is a parallel system, an n - 1 out of n system is a
'fail-safe’' system (see Barlow-Proschan [1]), and an n out of n

system is a series system. For these systems it is ecasy to see

that
n
h@-=1- il.ll(l - P;)»
n n
hy @ = 1E1Pi * i51((1 - p;) ,Eipj)
and

h_( p
s I .
n ) 1_lpi

Note that if S is the number of successes in n independent Bernoulli

S —
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trials, where for i = 1, ..., n, Py is the probability of success
on the ith trial, then P(S s k - 1) = hk(g) = hk“’l’ cens pn).
Hence the results in this paper on k out of n systems have inter-
pretations in terms of the number of successes in Bernoulli trials.
n
Ifps= (Pl' vers pn). then let p = (Zpi_/n. cees gpi/n).
1
Hoeffding ([4], 1956) showed that

n
h(, -+»P) 2 0@, ..., P) if §Pi 2 k

and

n
hk(pl' ceaey pn) < "k(p’ csey p) if ;pi sk - lo

Gleser [2], using the ’theory of majorization and Schur functions
(see Marshall and Olkin [S], Theorem 12. K.1), extended Hoeffding's

result and showed that hk(g) is Schur-convex in the region where

YO A A K P TR #

n n
Z Pi 2 k + 1 and Schur-concave in the region where Z Py <k -2,
1 1

More particularly Gleser showed that if p = (pl, eeep pn) ¢ [o, l]n

and I is a doubly stochastic matrix, then

n
h (p) 2 hy (pll) whenever § Pj2k+1l
and

hk(g) s hk(y_n) whenever ? P < k - 2.

This result allows one to make more general comparisons than one

could with Hoeffding's result. The major result of the present paper

enables one to extend the regions of Schur-convexity and -concavity
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of the function hk(g). The result is as follows:

n
Theorem 1.1. h, (p) is Schur-concave in the region |0, : - ﬂ
n
and Schur-convex in the region E—:—-} . 1] .

2. Majorization, Schur-convexity, and Schur-concavity. A vector

. )
X= (X, -ee, xn) is said to majorize a vector Z—I (yl. ;‘:.. yn) (x >

n 1
2012 Y0y )t M2t Yt e e Lty 2 Yy

snd g x[i] = g y[i], where the x[i]'s and yu]'s are components of
x and y respectively arranged in descending order. The following
lemma characterizes majorization and is due to Hardy, Littlewood
and P6lya ([3), 1934) (see also Marshall and Olkin (5], Theorem
2.8.2).

Lemma 2.1. The vector x majorizes the vector y if
and only if there exists an n x n doubly stochastic matrix I such
that y = x1.

A real valued function h defined on a set A c R" is Schur-
convex (Schur-concave) if h(x) 2 (s)h(y) whenever x 2 y and
X, Y € A. Now assume that A ¢ R" is a permutation symmetric convex
set with nonempty interior. If h is continuously differentiable
on the interior A° of A and continuous on A then h is Schur-convex

(-concave) on A if and only if for all i = j and x ¢ A°®,

(2.1) (x; - %)) -:-21(5) - %:—j @] 2 (s) 0.

y)
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This characterization of Schur-convexity (-concavity) is known
as the Schur-Ostrowski condition (see Marshall and Olkin [5]).

In investigating regions of Schur-convexity of the reliability
function hk: fo, l]“ + [0, 1), we use the following notation. If
I e [0, 1)" and ¢ is any integer then h (1) (b} (x)) will demote
the probability that £ or more (exactly &) independent components

with respective probabilities r., ..., T function. Note for

1’
example that with this notation h_,(r) = 1 and h?,(x) = 0. Ve
assume here that p = (p), .-, P) € [0, 1]" and 1et Ei(gij) be
the vector in [0, 1]“'l ([o, l]“'z) obtained from p by deleting
its ith coordinate (ith and jth coordinates).

Lemma 2.2, Forlsk<n,p_e(o.l)“mdn>2,
2 3hy 2 1. ox i

for all i, j, i = j.

Proof. For any index i, 1 < i < n, we have that
i i
hk(n) = Pihk_l(g )+ Q- Pi)hk(z ).
3hy i i
Hence for j = i, SI-’;(B) *h @) -8 @)
- oy, @) o @ - @)

! 1
-@y @ ¢ - pom .
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We see then by the Schur-Ostrowski condition (2.1) that hk(n)
is Schur-convex (-concave) in regions where for all i, j, i = j,
h; @i s @) h; @ 13 In particular note that if k = 1 (res-
pectively n), i.e. for a parallel (series) systenm, hk 2(p_ ij )=0
(h;_l(p_ij) = 0), and hence hl(p_) (hn(g)) is Schur-convex (-concave)
in [0, 11"

Lemma 2.3. Let n > 2 and k be such that 2 < k < n. Then for

any i # j,

n L@ s @) ')

whenever Py 2 (s) l for all ¢ = i, j.

Proof. Due to the symmetry of the situation, we need only show that

12 * 2 k -
h;_z(g ) s hk-l(l’-l ) whenever p, 2 n—.—%- for 8 = 3, ..., n.

In this proof, ¢ = (850 ---» en) and € = (e;, cees c;‘) will denote
n - 2 dimensional vectors whose components are zeroes or ones such

thates’nco0cn.k‘2mdc3’---’tn-k'lnNw

2280 hy_@'%) « [ PS5 a1 - py e La- p) ' "n
£

and
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(2.2b) by @4 = E‘ p§3 :n a - p3)°3 eee Q1 - pn)‘h .

Consider a term in the expansion of (2.2a), say for simplicity of

notation, the term py ... pQ - Ppep) -+ (1 - py). Then

Py -o- Bl = pp,y) - A -p) =

1
;_.—k [p3 pk(l Pk’l (l'p ) IE SPPRIE p3"'pk(1-pkol)"'(l'pnn

—— - R e e e s — - e ———

n - k times

S ok E’s "pk[n 1] (1-Pyyp)e--(A-Pp) ¢ oo ¢ P3Py (1-Py )

coe Qopp_ [ I]

(sincel-pzsl-n_l=n_lforalll.cs eeep )

= k—}f E’3' . pk[-l-‘{%] (l'pkoz) ces (l-pn)d-. --*P3.. .pk(l-pml) ces (l-pn_l):‘-;:-{[

S T P P (I Pyg) - (1R 9Pg B oBy ). (1B B, )-

Hence similarly for a general term in the expansion of (2.2a), we have

pl3...pm-pg V%S, (1-p ) On

el e afaepgt S ampptT,

S %1
!."c;z".‘.s.u L) ,ﬂ
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Therefore
12 1- -
h;-qu )= E P;S--~P:“(1 - Pg) €3...Qa - pn)1 n
1 €3 €nrr1n 137€3 o 1€
‘Ek-lz Pg™--+P, a ps) ...Q1 pn) n
= €’ el l.l-S,...,n

<] gy &) p3 ‘5(1-p3)1'°3...(1-pn)"‘5
€

(since for each ¢ there exist k - 1 distinct

€’ where ¢

. 2 €y for £ =3, ..., n).

= hy_ 1(1,_‘2) ) u

3. Proof of Theorem 1.1. Using the Schur-Ostrowski condition (2.1)

it is easy to verify Theorem 1.1 when n = 2. For n > 2, we have
already noted that when k = 1 (parallel system), hk is Schur-convex
in [0, I]n. Forn > 2 and k 2 2, it follows from Lemmas 2.2 and 2.3

that hk satisfies the Schur-Ostrowski condition for Schur-convexity

comemion o B4 1" ([ 52T

Remark 3.1. Gleser's result [2] shows that h, (p) is Schur-convex
(-concave) on the set {(p: Py ¢ - *p, 2 k + 1} ({p: Pyt ¢ P, Sk - 2}).
This result and Theorem 1.1 enable one to make various compariscas

of system reliability, and neither result encompasses the other.
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For example let us consider a 3 out of 4 system. Then
Theorem 1.1 implies that a system with component reliabilities
(1.0, .9, .8, .7) is superior (has higher reliability) than a
system with component reliabilities (.95, .95, .75, .75) which in
turn is superior to one with component reliabilities (.85, .85, .85, .85).
On the other hand Theorem 1.1 also implies that a system with compo-
nent reliabilities (.6, .5, .3, .2) is inferior to one with compo-
nent reliabilities (.6, .4, .4, .2) which in turn is inferior to one
with component reliabilities (.4, .4, .4, .4). These comparisons
are not implied by Gleser's result.
Remark 3.2, Let S be the number of successes in n independent
Bernoulli trials where P; is the probability of success on the ith
trial. Theq by Theorem 1.1, P(S 2 k) is Schur convex {(concave) in

- n - I®
k -1 1] [E), :‘—‘-—_—ﬂ ] Suppose now that 1 < k < k” < n. Then

n - 1°

it follows by the above that P(k” > S 2 k) is Schur-convex in
k -1 k° - 1"

n-1"n-1]°

o Rty aa - e e e il e — Ao e .
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